
1

LTOOD/OOAD - (c) STS 2004 1

Testing Tools

LTOOD/OOAD - (c) STS 2004 2

Testing in General

Motivation and Alternatives

LTOOD/OOAD - (c) STS 2004 3

Correctness of Software

! Sad but true: (hand-written) code is bug-ridden
! Typical statistics:

" error rate

" Space Shuttle
software:
! 3 millions LoC with 300 errors

! 3,000 millions cost amounts to $1000 per LoC

! 15,000 man years

! Cost to fix errors may be higher than original
development cost
" see rationale on slide 2-19, waterfall process, Boehm’s

spiral model

errors / 1000 LoCsoftware

less than 0.1Space Shuttle

0.2medical software

2 to 3“important” software

25“normal” software

LTOOD/OOAD - (c) STS 2004 4

Software Testing

! Goal: find “many” errors before shipping software
to customers
" cost of fixing errors after deployment

" acceptance / confidence of users

! Approach: try out software on in typical usage
scenarios
" scenarios can be derived from use cases

" problem: supply typical input data

LTOOD/OOAD - (c) STS 2004 5

Limitations

! Purpose of testing:
" By testing one can find errors in code.

" The passing of tests does not guarantee the
absence of errors
! the erroneous code was not covered by a test

! the input data may have been “fortunate”

! the error lies in missing fault tolerance

! Scope of testing:
" only functional requirements are checked

" non-functional requirements are not covered by test
cases; here, profiling is needed

LTOOD/OOAD - (c) STS 2004 6

Alternative: Software by Construction

! Ideal: software correct by construction
" formally specify software

" create software by a “constructive proof” of specification

" Model Driven Architecture

! Approaches:
" Efforts in the specification of program semantics [Floyd],

[Hoare], [Dijkstra], …

" Program specification languages: VDM, Z ([2])

! Obstacles:
" So far, “programming by specification” does not seem to

be a feasible approach in real-world software
development scenarios.

" Only functional requirements can be formulated.

2

LTOOD/OOAD - (c) STS 2004 7

Continuous Testing (1)

! Code is changed constantly, e.g. for:
" fixing errors

" adding new functionality

! Unified Process: iterative and incremental
software construction

! Agile methods (e.g., Extreme Programming [3]):
code is changed constantly as part of the
methodology

LTOOD/OOAD - (c) STS 2004 8

Continuous Testing (2)

! Today’s software development practice especially
relies on continuous testing:
" team development

" complex design
! changing a class can easily break code in other classes;

e.g., redefining a method affects the caller

! relationships between classes are not always obvious; e.g.,
dynamic dispatch in frameworks

" component integration
! inclusion of components not developed in-house

! complex, at times subtle interaction of components

LTOOD/OOAD - (c) STS 2004 9

Automated Testing

! Testing:
" test cases defined by

1. code to be checked

2. code to run tests (simulating operation)

3. input data to be used

4. output data expected

! (Semi-) Automatic testing:
" have this procedure executed automatically at certain

points during development

" generate reports on test results

LTOOD/OOAD - (c) STS 2004 10

Test-driven Development

! Automated testing during development: test-
driven development (TDD)

! Testing becomes part of development process
! Test case formulation becomes part of the

programming task
! Positive side effects:

" partial specification of program semantics

" test cases contribute to the documentation of software
artifacts

LTOOD/OOAD - (c) STS 2004 11

Unit Testing

Making sure the system does what it is
supposed to do.

LTOOD/OOAD - (c) STS 2004 12

Unit Testing

! Small test cases are run against pieces of the
software (hence the name unit test)

! OO again turns out to be a well-chosen paradigm:
" plenty of units

! Large number of tests can be run automatically
! Goals of unit testing:

" model requirements in unit tests

" use these to ensure that:
! new features are implemented correctly

! old features continue to work as expected

Tests individual modules as well as classes
of the application.

3

LTOOD/OOAD - (c) STS 2004 13

Integration Testing

! Larger test cases are run on higher level
! OO-structures: packages
! Goals are the same as for unit tests
! Similar to “Acceptance Testing” in EXtreme

Programming

Tests whether the modules of the application
work together.

LTOOD/OOAD - (c) STS 2004 14

How to Use Test-driven Development

! Implement tests as executable code
! To implement a class, you...

1. figure out what functionality it will have

2. map this functionality into attributes and methods

3. write a test case that tests at least the public methods

4. delvelop the class

5. test the class, if a test fails, go back to 4.

! Tests serve a double purpose:
" automatic verification

" documentation of how to use the class

LTOOD/OOAD - (c) STS 2004 15

Creating Tests

! Your tests need to cover all the “important”
cases, while minimizing the total number of tests

! Test should:
" Be sure to include normal as well as

" boundary cases in the tests

! A test can work on an individual class (unit tests)
" this can be achieved most of the time

" sometimes difficult to test all functionality this way

! Tests can also work on whole parts of the system
(integration tests)
" these tests often use customer supplied test data as

input and output

LTOOD/OOAD - (c) STS 2004 16

Unit Testing Details

! Tests are useful for quality-control, test can...
" work correctly (the class behaves as desired)

" fail (result not as expected)

" cause an error (test did not complete properly)

Note that there is a difference between failure
and error!

LTOOD/OOAD - (c) STS 2004 17

JUnit

! JUnit is a unit testing framework for the Java
platform.
" most of what is said here applies to unit testing in

general

" many testing frameworks for Java are based on JUnit

! Test are organized hierarchically, usually along
the package structure of the application
" test cases can be aggregated into test suites

" one suite per package of the application

" one case per class of the application

" one method in the test case per method in the class

LTOOD/OOAD - (c) STS 2004 18

JUnit (2)

! Whole family of unit testing frameworks: xUnit
! About 30 ports to various languages

" started with Python

" JUnit is the Java port

4

LTOOD/OOAD - (c) STS 2004 19

Example: Math Class

Math

min(int, int): int
add(int, int): int
sqrt(real): real

MathTest

testMin():void
testAdd():void
testSqrt():void

<<tests>>
Test case

Class
under test

void testSqrt() {
Math m = new Math()
assertEquals(3, m.sqrt(9));
assertEquals(1, m.sqrt(1));
try {

m.sqrt(-1);
fail();

} catch (IllegalArgumentException e) {
assertEquals(“No negatives!”,
e.getMessage());

}
}

LTOOD/OOAD - (c) STS 2004 20

JUnit (3)

test case

test suite

individual
tests

test with error

failure trace

LTOOD/OOAD - (c) STS 2004 21

Qulality Control

! Automation allows for easy, yet complete testing
! In team development, you normally run tests

before submitting a change to the repository
! Tests to run before checkin are called a

regression suite

1. Get an initial version from the repository.

2. Write code (create changes).

3. Run regression suite, if fails: fix; else:

4. Upload the changes into the repository.

5. Get the changes from the repository.

New developer workflow:

LTOOD/OOAD - (c) STS 2004 22

Implementing Unit Tests

! Each test will test a number of assertions
" implemented in assertXXX methods in JUnit

" “Is the actual value that is returned by the method
under test the one that was expected?”

void testSqrt() {
Math m = new Math()
assertEquals(3, m.sqrt(9));
assertEquals(1, m.sqrt(1));
try {

m.sqrt(-1);
fail();

} catch (IllegalArgumentException e) {
assertEquals(“No negatives!”,
e.getMessage());

}
}

test that should
work and return

the value
expected

test that should
work and return

the value
expected

if execution ever comes
here, the test will fail

make sure we
get an error and
the message is

right.

LTOOD/OOAD - (c) STS 2004 23

Implementing Unit Tests (2)

! Each test case extends junit.framework.TestCase
! TestCases can be bundled into suits
! JUnit provides methods for initialization and

clean-up:
" setUp() is called before each testing method

" tearDown() is called after each method

LTOOD/OOAD - (c) STS 2004 24

Common JUnit Methods

causes test to fail. Commonly
used with exception testing,
see example

fail()

test whether var is nullassertNull(var),
assertNotNull(var)

evaluate a boolean expression.assertFalse(expression),
assertTrue(expression)

compares expected value to
actual value. Test will fail if
they differ

assertEquals(expected, actual)

see [1] for details

5

LTOOD/OOAD - (c) STS 2004 25

Coverage: Path-Completeness

! How do you make sure, the code is properly
tested?

! Path-completeness
" every branch of code is covered by a test

" beware that path-completeness does not guarantee
complete tests!

int median(int x, int y, int z) {
return z;

}

void testMedian() {
...
assertEquals(2, o.median(4, 1, 2));

}

LTOOD/OOAD - (c) STS 2004 26

Coverage: Data Partitioning

! It is unfeasible to test all possible combinations of
input data,

! therefore you just test the characteristic cases.
! There is not general recipe how to do this, it

takes experience and a close look at the method
under test

! Generally, you will want to include:
" some “normal” cases

" some fence-post ones - i.e. the bordering cases that are
at the ends of the domain of allowed values

" some cases that are outside to test for proper handling
of errors

LTOOD/OOAD - (c) STS 2004 27

Mock-Ups

! Simulate parts of a system if you don’t
" have that part (yet)

" want to be dependend on a specific implementation

" want bugs in the sub-part to cause your test to fail

! Mock-ups are usually not functional
" just provide enough functionality to run the test

" “advanced” functionality (e.g., multi-user) not implemented

DB

Tests

Application

JDBC

Tests

Application

Mock-up JDBC

LTOOD/OOAD - (c) STS 2004 28

Debugging

Finding the cause of a failure

LTOOD/OOAD - (c) STS 2004 29

Need for Debugging

! Once an error has been discovered: what then?
! Tests usually only unveil the presence of an error

" This is the symptom.

! Example:
A precondition is violated because of an
unexpected null value in the database.
" Where has that value been created?

" (i.e., where is the cause of this error?)

! Approach: “debugging”
" inspection of the states a software at runtime

" finding the statement by which an erroneous state is
entered

LTOOD/OOAD - (c) STS 2004 30

Debugging Tools

! Debugging tools are common development tools
! The current form of debuggers used to be called

“symbolic debuggers”, since debugging is done
one the source code level
" inspect variables, method invocations, etc

" instead of memory dumps, and call stacks

" ... but you still have to know what a variable means

! Debuggers are usually integrated with IDEs.

6

LTOOD/OOAD - (c) STS 2004 31

Problem: Symptom and Cause

! Debugging is difficult because:
" Symptom and cause are often

seperated

" Symptom may disappear with
fixture of different bug

" Symptom might be outside the
scope of your system (e.g.,
library bug)

cause symptom

LTOOD/OOAD - (c) STS 2004 32

Debugging Concepts

! Typical debugging concepts are
" breakpoints

" step execution

" watches

! Moreover, modern debugging environments have
features like
" changing bindings of variables

" hot code replacement: changing code during debugging
process

LTOOD/OOAD - (c) STS 2004 33

Breakpoints

! A breakpoint is a point in the (source code of a)
program where execution should stop

! It allows inspection of the program’s state
! The developer can continue execution
! Many debuggers give you the option of

“conditional breakpoints”
" developer can specify a condition

" execution stops only if condition is true

! Exception-based languages also offer trapping of
exception

LTOOD/OOAD - (c) STS 2004 34

Step Execution

! Execute one line at a time.
! Comes in different flavours:

" You can step into method calls:
! “Step-into” vs.

! “Step-over”

" You can run to the end of the current method
! “Step-out”

LTOOD/OOAD - (c) STS 2004 35

Watches

! Most debuggers automatically display all varibales
in the current context

! Developers can configure an additional list of
expression to show, these are called watches

LTOOD/OOAD - (c) STS 2004 36

Hot Code Replacement

! Changes to the application’s code are injected
into the running system.

! Useful to:
" test fixes

" work on systems that take very long to start

! Support is often limited to method bodies:
" Currently you cannot change signatures in Java

" If you could, what would this mean in concurrent
systems?

7

LTOOD/OOAD - (c) STS 2004 37

Screenshot

LTOOD/OOAD - (c) STS 2004 38

Logging

Understanding complex inner workings

LTOOD/OOAD - (c) STS 2004 39

Motivation

! What is logging?
" Writing messages during runtime (to console, a file, an

e-mail address, ...)

! Isn’t this the poor-man’s approach to debugging?
" No.

" Complex systems are hard to debug.

" Well-placed log messages are usually much easier to
understand.

LTOOD/OOAD - (c) STS 2004 40

Naive Approach

! Just dump messages to the console:

! Disadvantages:
" production system will still dump messages

" too many messages if used a lot

" cannot be turned off

" cannot be directed to anything but the console

" might interfere with proper messages

! Not a good idea in general

x = algorithm.calculateResult();
System.out.println(“x = “ + String.valueOf(x));

LTOOD/OOAD - (c) STS 2004 41

Logging Libraries

! Supply sophisticated means for logging
! Log4J is one for Java. Logging work like this:
class MyClass {

private Logger LOG = Logger.getLogger(MyClass.class);
public void method1() {

...
x = algorithm.calculateResult();
LOG.debug(“x = “ + String.valueOf(x));

}
}

level of message:
debug

LTOOD/OOAD - (c) STS 2004 42

Log4J

! Can be configured without changing the code
" to log to different places

" to log only messages of a certain level (debug, info,
warn, error, ...)

" to have a different debug level for certain classes

" almost any format of log message

" many “appenders” (e.g. rolling file, e-mail, visual, text
file, XML file, ...)

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<appender name="console" class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d{DATE} [%t] %-5p (%F [%M]:%L) - %m\n"/>

</layout>

</appender>

...

8

LTOOD/OOAD - (c) STS 2004 43

Example File

...
<category name="de.tuhh.gkns.client" additivity="false">

<priority value="debug"/>

<appender-ref ref="console"/>

</category>

<category name="org.exist.xmldb" additivity="false">

<priority value="warn"/>

<appender-ref ref="console"/>

</category>

<root>

<priority value="error"/>

<appender-ref ref="console"/>

</root>

</log4j:configuration>

LTOOD/OOAD - (c) STS 2004 44

Logging

! Logging code is usually left in the production
system
" can turn on logging for certain components (single

classes) at customer

" minimal intrusion

" much easier to reproduce bugs with suitable log

! Sometimes also important for legal reasons
" e.g. web site logs

LTOOD/OOAD - (c) STS 2004 45

Profiling

Where are we wasting all that time?

LTOOD/OOAD - (c) STS 2004 46

Profilers

! Processing time consumption can be due to
" The use of an inappropriate algorithm (bubble sort)

" The unnecessary creation of large numbers of objects

" The unnecessary synchronization of threads or

" The repeated invocation of an operation

! Bottleneck are typically not where you expect it:
" your special algorithms are usually highly optimized ...

" ... while somewhere else in your program
String.toLowercase() is invoked unnecessarily a few
100.000 times

Profilers help finding codesections of your program that consume
an inappropriate amount of processing time. These codesections
represent bottlenecks in your program.

LTOOD/OOAD - (c) STS 2004 47

Profilers (2)

! A profiler can determine relative amount of
processing time used by methods.
" It is your job to judge whether this is inappropriate.

! Optimize the most consuming sections
" this will achieve high over-all effect

Profiling of Java programs is supported by the
Java Virtual Machine, that defines interfaces by
which the profilers can read profiling information
of a program.

LTOOD/OOAD - (c) STS 2004 48

Screenshot of a Profiler

9

LTOOD/OOAD - (c) STS 2004 49

Extensions of Profilers

! Monitor thread activity
" This simplifies the task of finding threads blocking one

another.

! Provide means for “heap walking”
" to trace memory leaks

" walk graphs of objects which are not released and thus
cannot be garbage collected

LTOOD/OOAD - (c) STS 2004 50

Thread Monitoring

LTOOD/OOAD - (c) STS 2004 51

Load Testing

Simulating real use

LTOOD/OOAD - (c) STS 2004 52

Load Testing Tools

! Load Test Preparation
1. Usage patterns of users are defined as scripts (called

agendas). Recording tools help simplify this task.

2. The agendas of different user roles can be combined to
represent typical system usages
! e.g. 98% browsing users with 2% of users buying products

Load Testing Tools simulate user load to a system.
This helps track how the system works under
heavy load.

LTOOD/OOAD - (c) STS 2004 53

Load Test

! Load Test Execution
" load testing tool plays agendas against the system

! the number of simulated users is increased over time, e.g.:
" from 50 to 2000 concurrent users or

" from 10 until the tested system breaks down

" load testing tool records performance data:
! average response time per request,

! percentage of dropped requests

! percentage of error pages sent back

! The measured data can be use to ...
" determine the maximum number of concurrent users a

system configuration can handle or

" test whether the system is able to handle a given load

LTOOD/OOAD - (c) STS 2004 54

JMeter

! Free Java Tool: JMeter
" you will learn more about it in the Web-Engineering

lecture next semester

sc
re

en
sh

ot
s

fro
m

 J
M

et
er

 d
oc

um
en

ta
tio

n
ht

tp
://

ja
ka

rta
.a

pa
ch

e.
or

g/
jm

et
er

/u
se

rm
an

ua
l/b

ui
ld

-w
eb

-te
st

-p
la

n.
ht

m
l

10

LTOOD/OOAD - (c) STS 2004 55

References

! Books
" [1] Eric M. Burke & Brian M. Coyner. Java Extreme

Programming Cookbook. Chapter 4 (JUnit) available
at http://www.oreilly.com/catalog/jextprockbk/chapter/ch04.pdf

! Articles
" [2] Thomas McGibbon. Analysis of Two Formal

Models: VDM and Z. available at
http://www.dacs.dtic.mil/techs/2fmethods/vdm-z.pdf

" [3] Extreme Programming FAQ.
http://www.jera.com/techinfo/xpfaq.html

